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I) L’APPRENTISSAGE NON SUPERVISÉ ET LE CLUSTERING 

Jusqu’à présent, nous avons étudié une méthode d’apprentissage supervisée qui fonctionne 
en régression et en classification. Dans le cadre de l’apprentissage supervisé, nous disposons 
généralement d’un ensemble de p variables caractéristiques X1, X2, …, Xp, mesurées sur n 
observations, ainsi que d’une variable réponse Y également mesurée sur ces mêmes n 
observations. L’objectif est alors de prédire Y à l’aide de X1, X2, …, Xp. 
 
Dans ce cours, nous allons étudier une méthode d’apprentissage non supervisé, destinée aux 
situations dans lesquelles nous ne disposons que d’un ensemble de variables 
caractéristiques. Nous ne cherchons pas à effectuer une prédiction, car nous ne disposons 
pas d’une variable réponse associée Y. L’objectif est plutôt de découvrir des informations 
intéressantes concernant les mesures de X1, X2, …, Xp. Existe-t-il une manière informative de 
visualiser les données ? Pouvons-nous découvrir des sous-groupes parmi les variables ou 
parmi les observations ? 
 
L’apprentissage non supervisé désigne un ensemble varié de techniques permettant de 
répondre à ce type de questions. Ici, nous nous concentrerons sur un algorithme 
appartenant à la classe des méthodes de clustering, visant à découvrir des sous-groupes 
inconnus au sein des données. 
 

I.1. Le défi de l’apprentissage non supervisé 

L’apprentissage supervisé est un domaine bien compris. Par exemple, si on souhaite prédire 
un résultat binaire à partir d’un jeu de données, on dispose d’un ensemble d’outils très 
développés (tels que la régression, les réseaux de neurones, la méthode KNN), ainsi qu’une 
compréhension claire de la manière d’évaluer la qualité des résultats obtenus (en utilisant la 
validation sur un ensemble de test indépendant par exemple). 
 
L’apprentissage non supervisé est souvent réalisé dans le cadre d’une analyse exploratoire 
des données, ce qui le rend souvent bien plus difficile que l’apprentissage supervisé : 

1 Il n’existe pas d’objectif simple pour l’analyse, tel que la prédiction d’une variable 
réponse ; 

2 Il peut être difficile d’évaluer les résultats obtenus par les méthodes d’apprentissage 
non supervisé. En effet, si nous ajustons un modèle prédictif à l’aide d’une technique 
d’apprentissage supervisé, il est alors possible de vérifier notre travail en observant 
dans quelle mesure notre modèle prédit correctement la variable réponse Y sur des 
observations qui n’ont pas été utilisées lors de l’ajustement du modèle. En revanche, 
dans l’apprentissage non supervisé, il n’existe aucun moyen de vérifier notre travail, 
car nous ne connaissons pas la réponse véritable. 

 
Les techniques d’apprentissage non supervisé prennent une importance croissante dans de 
nombreux domaines. Voici quelques exemples : 

3 Un moteur de recherche peut choisir quels résultats afficher à un individu donné en 
se basant sur les historiques de clics d’autres individus présentant des schémas de 
recherche similaires. 

4 Un site de commerce en ligne peut chercher à identifier des groupes d’acheteurs 
présentant des historiques de navigation et d’achats similaires, ainsi que des articles 
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présentant un intérêt particulier pour les acheteurs au sein de chaque groupe. Un 
acheteur individuel peut alors se voir proposer de manière préférentielle les articles 
susceptibles de l’intéresser particulièrement, sur la base des historiques d’achat 
d’acheteurs similaires. 

 
Ces tâches d’apprentissage statistique, et bien d’autres encore, peuvent être réalisées à 
l’aide de techniques d’apprentissage non supervisé. 
 

I.2. Les méthodes de clustering 

Le clustering désigne un ensemble très large de techniques visant à identifier des sous-
groupes, ou classes, au sein d’un jeu de données. Lorsque nous réalisons un clustering des 
observations d’un jeu de données, nous cherchons à les partitionner en groupes distincts de 
telle sorte que les observations appartenant à un même groupe soient très similaires entre 
elles, tandis que les observations appartenant à des groupes différents soient très 
dissemblables. 
 
Pour rendre cela concret, il est nécessaire de définir ce que signifie le fait que deux 
observations ou plus soient similaires ou différentes. Il s’agit souvent d’une considération 
spécifique au domaine, qui doit être établie à partir de la connaissance des données 
étudiées. 
 
Par exemple, supposons que nous disposions d’un ensemble de n observations, chacune 
caractérisée par p variables. Les n observations peuvent correspondre à des utilisateurs 
d’une plateforme de streaming musical, et les p variables peuvent correspondre à des 
caractéristiques mesurées pour chaque utilisateur : temps moyen d’écoute par jour, genres 
musicaux les plus écoutés, fréquence de découverte de nouveaux artistes, utilisation de 
playlists, heure d’écoute habituelle, etc. 
 
Nous pouvons soupçonner qu’il existe une hétérogénéité parmi ces utilisateurs. Par 
exemple, il pourrait exister plusieurs types d’auditeurs sans que ces catégories soient 
connues à l’avance : auditeurs occasionnels, passionnés d’un genre précis, explorateurs 
musicaux, utilisateurs qui écoutent principalement en arrière-plan, etc. Le clustering peut 
alors être utilisé pour identifier automatiquement ces sous-groupes d’utilisateurs à partir 
des données disponibles. Il s’agit d’un problème d’apprentissage non supervisé, car l’objectif 
est de découvrir une structure (ici des groupes d’utilisateurs aux comportements similaires) 
uniquement à partir des variables observées. À l’inverse, dans un problème d’apprentissage 
supervisé appliqué au même contexte, l’objectif pourrait être de prédire une variable 
précise, par exemple la probabilité qu’un utilisateur s’abonne à une offre premium ou qu’il 
écoute un nouvel album recommandé. 
 
Dans ce cours, nous nous concentrons sur une des approches de clustering les plus connues : 
l’algorithme des k moyennes (clustering k-means). 
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II) LA MÉTHODE DES K MOYENNES 

II.1. Notion de clusters et centroïdes 

La méthode des k moyennes est une approche simple et élégante pour partitionner un jeu 
de données en K clusters distincts et non chevauchants. Pour réaliser ce clustering, il faut 
d’abord spécifier le nombre souhaité de clusters K ; ensuite, l’algorithme des k moyennes 
attribuera chaque observation à exactement l’un des K clusters. 
 
La Figure 1 montre les résultats obtenus en appliquant l’algorithme des k moyennes à un 
exemple simulé composé de 150 observations en deux dimensions, en utilisant trois valeurs 
différentes de K, le nombre de clusters. La couleur et la forme (ronds bleus, croix jaunes, 
triangles verts et carrés violets) de chaque observation indiquent le cluster auquel elle a été 
affectée par l’algorithme des k moyennes. Il n’existe pas d’ordre entre les clusters ; 
l’attribution des couleurs est donc arbitraire. Ces étiquettes de clusters n’ont pas été 
utilisées pour effectuer le clustering ; elles constituent au contraire les sorties de la 
procédure de clustering. 
 
                       K=2                                                K=3                                                   K=4 

 
Figure 1 : Simulation d'un jeu de données partitionné avec 150 observations en 2D 

Prenons un autre exemple de points de données bidimensionnels, représenté dans le 
panneau de gauche de la Figure 2. En examinant attentivement les données qui y sont 
présentées, on peut voir qu’elles se répartissent naturellement en trois groupes ou clusters. 
Dans le panneau de droite, les points sont associés à 3 clusters. Les centres de chaque 
cluster sont également représentés. Ces centres de clusters sont souvent désignés, dans le 
jargon de l’apprentissage automatique, sous le terme de centroïdes de clusters. 
 

 
Figure 2 : Jeu de données bidimensionnel (gauche) et regroupement en clusters (K=3) 
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II.2. Problème d’optimisation pour construire les clusters 

Commençons par introduire quelques notations. Soit D = {x1, . . . , xn} les observations et 
soient C1, …, CK des ensembles contenant les observations xi. Ces ensembles sont appelés 
des clusters et vérifient deux propriétés : 

- 𝐶1 ∪ 𝐶2 ∪. . .∪ 𝐶𝐾 = {x1, . . . , xn} : chaque observation appartient au moins à un 
des K clusters. 

- 𝐶k ∩ 𝐶k′ = ∅ pour tous k ≠ k′ : les clusters ne se chevauchent pas. Aucune 
observation n'appartient à plus d'un cluster. 

 
Par exemple, si la i-ème observation appartient au k-ème cluster, alors xi ∈ 𝐶𝑘. L’idée sous-
jacente à l’algorithme des k moyennes est qu’un bon partitionnement est celui pour lequel la 
variation intra-cluster est aussi faible que possible. La variation intra-cluster associée au 
cluster 𝐶k est une mesure 𝑊(𝐶k) de l’ampleur des différences entre les observations 
appartenant à ce cluster. Nous cherchons donc à résoudre le problème suivant : 

minimiser
𝐶1,...,𝐶𝐾

{∑𝑊(𝐶𝑘)

𝐾

𝑘=1

} 

Cette formule signifie que nous souhaitons partitionner les observations en K clusters de 
manière à ce que la variation intra-cluster totale, obtenue en la sommant sur l’ensemble des 
K clusters, soit aussi faible que possible. 
 
Pour résoudre ce problème de minimisation, nous devons définir la variation intra-cluster. Il 
existe de nombreuses manières possibles de formaliser ce concept, mais la plus courante 
repose sur la distance euclidienne au carré : 

𝑊(𝐶k) =
1

|𝐶k|
∑ ‖𝑥𝑖 − 𝑥𝑖'‖2

2

xi∈𝐶𝑘
xi'∈𝐶𝑘

        , 𝑥𝑖 ∈ ℝ
𝑝 𝑒𝑡 𝑥𝑖 = (𝑥𝑖1, . . . , 𝑥𝑖𝑝) 

=
1

|𝐶k|
∑ ∑(𝑥𝑖𝑗 − 𝑥𝑖'𝑗)

2

𝑝

𝑗=1xi∈𝐶𝑘
xi'∈𝐶𝑘

 

… où |𝐶𝑘| désigne le nombre d’observations dans le k-ième cluster. Autrement dit, la 
variation intra-cluster du k-ième cluster est égale à la somme de toutes les distances 
euclidiennes au carré calculées entre chaque paire d’observations appartenant à ce cluster, 
divisée par le nombre total d’observations du k-ième cluster. 
 
En combinant ces équations, on obtient le problème d’optimisation qui définit l’algorithme 
des k moyennes : 

minimiser
𝐶1,...,𝐶𝐾

{
 

 

∑
1

|𝐶k|
∑ ∑(𝑥𝑖𝑗 − 𝑥𝑖'𝑗)

2

𝑝

𝑗=1xi∈𝐶𝑘
xi'∈𝐶𝑘

𝐾

𝑘=1
}
 

 

 

Ce problème fait intervenir les distances entre toutes les paires de points, ce qui le rend 
extrêmement complexe à résoudre. Il peut cependant être réécrit sous une forme 
équivalente faisant apparaître explicitement les centroïdes des clusters, mieux adaptée à 
une résolution algorithmique.  
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II.3. Problème d’optimisation avec les centroïdes 

On peut manipuler l’expression précédente pour faire apparaître le centroïde d’un cluster : 

1

|𝐶k|
∑ ∑(𝑥𝑖𝑗 − 𝑥𝑖'𝑗)

2

𝑝

𝑗=1

=
xi∈𝐶𝑘
xi'∈𝐶𝑘

 
1

|𝐶k|
∑ ∑(𝑥𝑖𝑗

2 − 2𝑥𝑖𝑗𝑥𝑖′𝑗 + 𝑥𝑖'𝑗
2)

𝑝

𝑗=1xi∈𝐶𝑘
xi'∈𝐶𝑘

 

=
1

|𝐶k|

(

 |𝐶𝑘| ∑ ∑𝑥𝑖𝑗
2

𝑝

𝑗=1xi∈𝐶𝑘

+ |𝐶𝑘| ∑ ∑𝑥𝑖'𝑗
2

𝑝

𝑗=1xi'∈𝐶𝑘

− 2 ∑ ∑𝑥𝑖𝑗𝑥𝑖'𝑗

𝑝

𝑗=1xi∈𝐶𝑘
xi'∈𝐶𝑘 )

  

=
1

|𝐶k|
(2|𝐶𝑘| ∑ ∑𝑥𝑖𝑗

2

𝑝

𝑗=1xi∈𝐶𝑘

− 2∑(∑ 𝑥𝑖𝑗
xi∈𝐶𝑘

)( ∑ 𝑥𝑖'𝑗
xi'∈𝐶𝑘

)

𝑝

𝑗=1

) 

=
1

|𝐶k|
(2|𝐶𝑘| ∑ ∑𝑥𝑖𝑗

2

𝑝

𝑗=1xi∈𝐶𝑘

− 2∑(∑ 𝑥𝑖𝑗
xi∈𝐶𝑘

)

2𝑝

𝑗=1

) 

= 2 ∑ ‖𝑥𝑖‖2
2

xi∈𝐶𝑘

−
2

|𝐶k|
‖𝜇Ck‖2

2
  𝑎𝑣𝑒𝑐 𝜇Ck =

1

|𝐶𝑘|
∑ 𝑥𝑖
xi∈𝐶𝑘

 

𝜇Ck  est le vecteur moyen des observations appartenant au cluster k (centroïde du cluster k). 

= 2 ∑ ‖𝑥𝑖‖2
2

xi∈𝐶𝑘

−
2

|𝐶k|
‖ ∑ 𝑥𝑖
xi∈𝐶𝑘

‖

2

= 2 ∑ ‖𝑥𝑖‖2
2

xi∈𝐶𝑘

− 2 ∑ 𝑥𝑖
xi∈𝐶𝑘

∙ 𝜇Ck  

= 2 ∑ ‖𝑥𝑖‖2
2

xi∈𝐶𝑘

− 4 ∑ 𝑥𝑖
xi∈𝐶𝑘

∙ 𝜇Ck + 2 ∑ 𝑥𝑖
xi∈𝐶𝑘

∙ 𝜇Ck  

= 2 ∑ ‖𝑥𝑖‖2
2

xi∈𝐶𝑘

− 4 ∑ 𝑥𝑖
xi∈𝐶𝑘

∙ 𝜇Ck + 2‖𝜇Ck‖2
2
 

= 2 ∑ ‖𝑥𝑖‖2
2

xi∈𝐶𝑘

− 4 ∑ 𝑥𝑖
xi∈𝐶𝑘

∙ 𝜇Ck + 2|𝐶k| ∑ ‖𝜇Ck‖2
2

xi∈𝐶𝑘

 

= 2 ∑ (‖𝑥𝑖‖2
2 − 2𝑥𝑖 ∙ 𝜇Ck + ‖𝜇Ck‖2

2
)

xi∈𝐶𝑘

 

= 2 ∑ ‖𝑥𝑖 − 𝜇Ck‖2
2

xi∈𝐶𝑘

 

Le problème d’optimisation peut donc s’écrire sous la forme suivante : 

minimiser
𝐶1,...,𝐶𝐾

{∑ ∑ ‖𝑥𝑖 − 𝜇Ck‖2
2

xi∈𝐶𝑘

𝐾

𝑘=1

} 

Le problème consiste maintenant à partitionner les observations en K clusters de sorte à 
minimiser, sur l’ensemble des clusters, la somme des distances euclidiennes au carré entre 
chaque observation et le centroïde de son cluster (fonction objectif). Faire apparaître les 
centroïdes permet d’exprimer le problème initial uniquement en fonction des distances 
entre chaque observation et un représentant du cluster, ce qui simplifie considérablement 
l’analyse et sa résolution. 
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II.4. Algorithme 

Le problème d’optimisation reste très difficile à résoudre exactement, puisqu’il existe 
approximativement Kn façons de répartir n observations en K clusters. Ce nombre devient 
colossal dès que K ou n ne sont pas extrêmement petits. 
 
Heureusement, un algorithme très simple permet d’obtenir un optimum local (une solution 
généralement satisfaisante) pour ce problème d’optimisation. Cet algorithme, inventé par 
Lloyd en 1957, est fondé sur l'heuristique gloutonne. Il consiste à : 

1. Choisir au hasard k observations dans D : elles constituent les centres initiaux des 
k clusters en construction. 

2. Ce choix étant fait, on répète les deux opérations suivantes jusqu'à ce que les 
clusters soient stables : 

a. On place chaque observation dans le cluster dont le centre est le plus 
proche.  

b. On calcule le centre des clusters 
 

Algorithme des k moyennes 
 
# On note j(xi) l’indice du cluster de xi 
# K : Nombre de clusters ; 𝑥 : observation 
 
K_MOYENNES (𝑥, 𝐾) : 
 

Choisir au hasard les centres 𝜇C1 , 𝜇C2 , 𝜇CK parmi les observations xi 

Tant que les clusters ne sont pas stables : 
Pour tout i ∈ {1, . . . , n} : 

j(xi) ←  arg min
j∈{1,..,K}

‖𝑥𝑖 − 𝜇Cj‖2

2

 

Pour tout k ∈ {1, . . . , K} : 

𝜇Ck ←
1

|𝐶k|
∑ 𝑥𝑖
xi∈𝐶k

=
1

|𝐶k|
∑ ∑𝑥𝑖𝑗

𝑝

𝑗=1xi∈𝐶k

 

Renvoyer 𝐶1, 𝐶2, . . . , 𝐶K 

La complexité du calcul de la norme d'un vecteur de ℝ𝑝 est en O(p), or chaque itération de la 
boucle « Tant que » de l'algorithme nécessite le calcul de n∙k telles distances, d'où une 
complexité en O(p∙n∙k) pour chaque itération. Ainsi, la complexité totale de l'algorithme est 
en O(m∙p∙n∙k) où m est le nombre d'itérations de la boucle « Tant que ». 

En pratique, le nombre d’itérations m est souvent faible (quelques dizaines), mais il n’existe 
pas de garantie simple en O(n) (k, p et m étant négligeables devant n) au pire cas ; on fixe 
souvent un maximum d’itération. 
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II.5. Convergence 

Lorsque le résultat ne change plus, un optimum local a été atteint. La Figure 3 illustre la 
progression de l’algorithme appliqué à un jeu de données simulé. L’algorithme des k 
moyennes tire son nom du fait qu’à l’étape 2(b), les centroïdes des clusters sont calculés 
comme la moyenne des observations affectées à chaque cluster. 
 
 

 

 
 
 

 
 
 

 
Figure 3 : Progression de l’algorithme des k moyennes avec K = 3 

Données Tirage des centres Itération 1 (2a) 

Itération 2 (2a) Itération 2 (2b) Itération 3 (2a) Itération 3 (2b) 

Itération 1 (2b) 

Itération 4 (2a) Itération 4 (2b) Itération 5 (2a) Itération 5 (2b) 



COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – ALGORITHME DES K MOYENNES 

9 

II.6. Impact des choix initiaux 

Comme l’algorithme des k moyennes converge vers un optimum local et non vers un 
optimum global, les résultats obtenus dépendent de l’affectation initiale (aléatoire) des 
observations aux clusters à l’étape 1 de l’algorithme. Pour cette raison, il est important 
d’exécuter l’algorithme plusieurs fois à partir de différentes configurations initiales 
aléatoires. On sélectionne ensuite la meilleure solution, c’est-à-dire celle pour laquelle la 
fonction objectif est minimale. 
 
La Figure 4 illustre les optima locaux obtenus en lançant l’algorithme six fois avec six 
affectations initiales différentes, sur un jeu de données simulé. Dans cet exemple, le meilleur 
partitionnement est celui dont la valeur du critère est égale à 380.0. 
 

 
Figure 4 : Algorithme des k moyennes lancé six fois sur un jeu de données simulé, K=3 
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II.7. Choix du nombre de clusters 

Comme nous l’avons vu, pour appliquer l’algorithme des k-moyennes, il est nécessaire de 
choisir le nombre de clusters que l’on suppose présents dans les données. Le choix de K ne 
possède pas de solution universelle. Plusieurs critères complémentaires sont utilisés selon le 
contexte (exploration, modélisation, contraintes métier). 
 
La méthode la plus classique est le critère du coude (elbow method). On trace l’inertie intra-
classe en fonction de K : 

J(K) =∑ ∑ ‖𝑥𝑖 − 𝜇Ck‖2
2

xi∈𝐶𝑘

K

k=1

 

 
On choisit la valeur où la décroissance de J(K) ralentit nettement. La limite de cette méthode 
est que le « coude » peut être peu marqué ou subjectif. 
 
La Figure 5 montre une courbe de coude typique pour le jeu de données utilisé dans les 
illustrations de la Figure 4: 

- Forte décroissance de J(K) pour K entre K=1 et K=3, 
- Ralentissement net après K=3 

 
Le coude apparaît ici autour de K=3, ce qui est cohérent avec la structure du jeu de données 
utilisé (3 amas). 

 
Figure 5 : Courbe de coude typique 
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III) EXEMPLES D’IMPLÉMENTATION EN PYTHON 
Pour implémenter en Python l'algorithme des k moyennes, définissons deux 
sous­programmes. 
 

III.1. Code de l’étape 2a : Attribution des observations aux clusters 

Le premier permet de trouver l’indice du cluster le plus proche d’une liste d’observations x. Il 
effectue l’étape 2a de l’algorithme : 

j(xi) ←  arg min
j∈{1,..,K}

‖𝑥𝑖 − 𝜇Cj‖2

2

 

Remarque : Le code ci-dessous remplace ‖𝑥𝑖 − 𝜇Cj‖2

2

 par ‖𝑥𝑖 − 𝜇Cj‖2
 dans l’argmin. Cela 

est possible car les deux quantités induisent le même ordre sur les distances (croissance 
stricte sur ℝ+. 

 

# x : Matrice des observations, de forme (n,p) 
# centres : Matrice des centroïdes, de forme (K,p) 
 
def CALCULER_CLUSTERS(x,centres): 
    dist=[]  
    for z in centres:  
        dist.append(np.linalg.norm(x-z,axis=1)) 
    dist=np.array(dist) 
    y=np.argmin(dist,axis=0) 
    return y 

 
 

III.2. Code de l’étape 2b : Calcul des centroïdes 

Le deuxième sous-programme reçoit les observations avec leurs étiquettes (clusters 
attribués) provisoires et calcule les centres des clusters. Il implémente l’étape 2b de 
l’algorithme : 

𝜇Ck ←
1

|𝐶k|
∑ 𝑥𝑖
xi∈𝐶k

 

 
# x : Matrice des observations, de forme (n,p) 
# y : Vecteur des labels, de forme (n), indiquant le cluster 
#     de chaque observation 
 
def CALCULER_CENTRES(x,y): 
    centres=[] 
    for label in np.unique(y):  
        centre=np.mean(x[y==label],axis=0) 
        centres.append(centre)  
    return np.array(centres) 
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III.3. Algorithme complet 

Enfin, l'algorithme complet : après avoir initialisé les centres, on effectue une boucle dans 
laquelle les algorithmes précédents sont appelés : 
 
# x : Observations, de forme (n,p) 
# k : Nombre de clusters 
 
def K_MOYENNES(x,K): 
    x=np.array(x) 
 
    # Initialisation des centres 
    indices=np.random.choice(len(x),size=K,replace=False) 
    centres=x[indices] 
 
    # Initialisation des clusters 
    y=CALCULER_CLUSTERS(x,centres) 
    y_prec=None 
 
    # Boucle 
    while not np.all(y==y_prec): 
        y_prec=y.copy() 
        centres=CALCULER_CENTRES(x,y) 
        y=CALCULER_CLUSTERS(x,centres) 
    return y,centres 


