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1) L’APPRENTISSAGE NON SUPERVISE ET LE CLUSTERING

Jusqu’a présent, nous avons étudié une méthode d’apprentissage supervisée qui fonctionne
en régression et en classification. Dans le cadre de I'apprentissage supervisé, nous disposons
généralement d’un ensemble de p variables caractéristiques X1, X, ..., Xp, mesurées sur n
observations, ainsi que d’une variable réponse Y également mesurée sur ces mémes n
observations. L'objectif est alors de prédire Y a I'aide de X3, Xa, ..., Xp.

Dans ce cours, nous allons étudier une méthode d’apprentissage non supervisé, destinée aux
situations dans lesquelles nous ne disposons que d’un ensemble de variables
caractéristiques. Nous ne cherchons pas a effectuer une prédiction, car nous ne disposons
pas d’une variable réponse associée Y. L’objectif est plutét de découvrir des informations
intéressantes concernant les mesures de X1, Xa, ..., Xp. Existe-t-il une maniere informative de
visualiser les données ? Pouvons-nous découvrir des sous-groupes parmi les variables ou
parmi les observations ?

L'apprentissage non supervisé désigne un ensemble varié de techniques permettant de
répondre a ce type de questions. Ici, nous nous concentrerons sur un algorithme
appartenant a la classe des méthodes de clustering, visant a découvrir des sous-groupes
inconnus au sein des données.

I.1. Le défi de I'apprentissage non supervisé

L’apprentissage supervisé est un domaine bien compris. Par exemple, si on souhaite prédire
un résultat binaire a partir d’un jeu de données, on dispose d’un ensemble d’outils trés
développés (tels que la régression, les réseaux de neurones, la méthode KNN), ainsi qu’une
compréhension claire de la maniére d’évaluer la qualité des résultats obtenus (en utilisant la
validation sur un ensemble de test indépendant par exemple).

L'apprentissage non supervisé est souvent réalisé dans le cadre d’'une analyse exploratoire
des données, ce qui le rend souvent bien plus difficile que I'apprentissage supervisé :

1 |l n’existe pas d’objectif simple pour I'analyse, tel que la prédiction d’une variable
réponse ;

2 |l peut étre difficile d’évaluer les résultats obtenus par les méthodes d’apprentissage
non supervisé. En effet, si nous ajustons un modele prédictif a I'aide d’'une technique
d’apprentissage supervisé, il est alors possible de vérifier notre travail en observant
dans quelle mesure notre modele prédit correctement la variable réponse Y sur des
observations qui n’ont pas été utilisées lors de I'ajustement du modéle. En revanche,
dans 'apprentissage non supervisé, il n’existe aucun moyen de vérifier notre travail,
car nous ne connaissons pas la réponse véritable.

Les techniques d’apprentissage non supervisé prennent une importance croissante dans de
nombreux domaines. Voici quelques exemples :

3 Un moteur de recherche peut choisir quels résultats afficher a un individu donné en
se basant sur les historiques de clics d’autres individus présentant des schémas de
recherche similaires.

4 Un site de commerce en ligne peut chercher a identifier des groupes d’acheteurs
présentant des historiques de navigation et d’achats similaires, ainsi que des articles
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présentant un intérét particulier pour les acheteurs au sein de chaque groupe. Un
acheteur individuel peut alors se voir proposer de maniére préférentielle les articles
susceptibles de l'intéresser particulierement, sur la base des historiques d’achat
d’acheteurs similaires.

Ces taches d’apprentissage statistique, et bien d’autres encore, peuvent étre réalisées a
I'aide de techniques d’apprentissage non supervisé.

1.2. Les méthodes de clustering

Le clustering désigne un ensemble tres large de techniques visant a identifier des sous-
groupes, ou classes, au sein d’un jeu de données. Lorsque nous réalisons un clustering des
observations d’un jeu de données, nous cherchons a les partitionner en groupes distincts de
telle sorte que les observations appartenant a un méme groupe soient trés similaires entre
elles, tandis que les observations appartenant a des groupes différents soient tres
dissemblables.

Pour rendre cela concret, il est nécessaire de définir ce que signifie le fait que deux
observations ou plus soient similaires ou différentes. Il s’agit souvent d’une considération
spécifique au domaine, qui doit étre établie a partir de la connaissance des données
étudiées.

Par exemple, supposons que nous disposions d’un ensemble de n observations, chacune
caractérisée par p variables. Les n observations peuvent correspondre a des utilisateurs
d’une plateforme de streaming musical, et les p variables peuvent correspondre a des
caractéristiques mesurées pour chaque utilisateur : temps moyen d’écoute par jour, genres
musicaux les plus écoutés, fréquence de découverte de nouveaux artistes, utilisation de
playlists, heure d’écoute habituelle, etc.

Nous pouvons soupconner qu’il existe une hétérogénéité parmi ces utilisateurs. Par
exemple, il pourrait exister plusieurs types d’auditeurs sans que ces catégories soient
connues a l'avance : auditeurs occasionnels, passionnés d’un genre précis, explorateurs
musicaux, utilisateurs qui écoutent principalement en arriére-plan, etc. Le clustering peut
alors étre utilisé pour identifier automatiquement ces sous-groupes d’utilisateurs a partir
des données disponibles. Il s’agit d’'un probléme d’apprentissage non supervisé, car I'objectif
est de découvrir une structure (ici des groupes d’utilisateurs aux comportements similaires)
uniquement a partir des variables observées. A I'inverse, dans un probléme d’apprentissage
supervisé appliqué au méme contexte, I'objectif pourrait étre de prédire une variable
précise, par exemple la probabilité qu’un utilisateur s’abonne a une offre premium ou qu’il
écoute un nouvel album recommandé.

Dans ce cours, nous nous concentrons sur une des approches de clustering les plus connues :
I'algorithme des k moyennes (clustering k-means).
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1) LA METHODE DES K MOYENNES

11.1. Notion de clusters et centroides

La méthode des k moyennes est une approche simple et élégante pour partitionner un jeu
de données en K clusters distincts et non chevauchants. Pour réaliser ce clustering, il faut

d’abord spécifier le nombre souhaité de clusters K ; ensuite, I'algorithme des k moyennes

attribuera chaque observation a exactement I'un des K clusters.

La Figure 1 montre les résultats obtenus en appliquant I'algorithme des k moyennes a un
exemple simulé composé de 150 observations en deux dimensions, en utilisant trois valeurs
différentes de K, le nombre de clusters. La couleur et la forme (ronds bleus, croix jaunes,
triangles verts et carrés violets) de chaque observation indiquent le cluster auquel elle a été
affectée par I'algorithme des k moyennes. Il n’existe pas d’ordre entre les clusters ;
I'attribution des couleurs est donc arbitraire. Ces étiquettes de clusters n’ont pas été
utilisées pour effectuer le clustering ; elles constituent au contraire les sorties de la
procédure de clustering.
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Figure 1 : Simulation d'un jeu de données partitionné avec 150 observations en 2D

Prenons un autre exemple de points de données bidimensionnels, représenté dans le
panneau de gauche de la Figure 2. En examinant attentivement les données qui y sont
présentées, on peut voir qu’elles se répartissent naturellement en trois groupes ou clusters.
Dans le panneau de droite, les points sont associés a 3 clusters. Les centres de chaque
cluster sont également représentés. Ces centres de clusters sont souvent désignés, dans le
jargon de I'apprentissage automatique, sous le terme de centroides de clusters.

Figure 2 : Jeu de données bidimensionnel (gauche) et regroupement en clusters (K=3)




COURS : ALGORITHMES POUR L' INTELLIGENCE ARTIFICIELLE — ALGORITHME DES K MOYENNES

11.2. Probleme d’optimisation pour construire les clusters

Commencons par introduire quelques notations. Soit D = {x;,...,X,} les observations et
soient Cy, ..., Ck des ensembles contenant les observations x;. Ces ensembles sont appelés
des clusters et vérifient deux propriétés :
- C;UC,VU...UCg ={Xq,...,%X,} : chague observation appartient au moins a un
des K clusters.
- Cx N Cy = @ pourtousk # K’ : les clusters ne se chevauchent pas. Aucune
observation n'appartient a plus d'un cluster.

Par exemple, si la i-eme observation appartient au k-eme cluster, alors x; € Cy. L'idée sous-
jacente a I'algorithme des k moyennes est qu’un bon partitionnement est celui pour lequel la
variation intra-cluster est aussi faible que possible. La variation intra-cluster associée au
cluster Cy est une mesure W (Cy) de I'ampleur des différences entre les observations
appartenant a ce cluster. Nous cherchons donc a résoudre le probléme suivant :

K
minimiser Z W(Cy)
C1,.Ckg
k=1
Cette formule signifie que nous souhaitons partitionner les observations en K clusters de
maniére a ce que la variation intra-cluster totale, obtenue en la sommant sur I'ensemble des
K clusters, soit aussi faible que possible.

Pour résoudre ce probléeme de minimisation, nous devons définir la variation intra-cluster. Il
existe de nombreuses maniéres possibles de formaliser ce concept, mais la plus courante
repose sur la distance euclidienne au carré :

1 2
W(C) = Z e, —xpl13 % €RP et x; = (xp1,..., Xip)

= ﬁ z Z(Xij - xi'j)z

Xi€C j=1

Xy €Ck
... oU |Cy| désigne le nombre d’observations dans le k-iéme cluster. Autrement dit, la
variation intra-cluster du k-ieme cluster est égale a la somme de toutes les distances
euclidiennes au carré calculées entre chaque paire d’observations appartenant a ce cluster,
divisée par le nombre total d’observations du k-ieme cluster.

En combinant ces équations, on obtient le probléme d’optimisation qui définit I’algorithme
des k moyennes :

K 14
o 1 2
minimiser Z_ Z Z(xij _xi'j)
C1,--Ck |Ck| .
k=1 XiECK j=1
X' €Ck

Ce probleme fait intervenir les distances entre toutes les paires de points, ce qui le rend
extrémement complexe a résoudre. |l peut cependant étre réécrit sous une forme
équivalente faisant apparaitre explicitement les centroides des clusters, mieux adaptée a
une résolution algorithmique.
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11.3. Probleme d’optimisation avec les centroides

On peut manipuler I'expression précédente pour faire apparaitre le centroide d’un cluster :

14 14
1 2 1
1Gel Z Z(xif —xp) = 1Cal z Z(xijz — 2%y + Xp°)

Xi€Ck j=1 Xi€Ck j=1
X' €Ck Xi'€Ck
p p p
= i C 24 lC R X
= |C | | kl Xij + | kl Xi'j XijXij
k Xi€Ck j=1 Xy €Ck j=1 Xi€Ck j=1
Xi'€Ck
p p
(e S5 (3 0)(5
k Xi€Ck j=1 Jj=1 \Xi€Ck Xi'€Ck
14 p 2
1 2
=T\ 26 2, 2t =2 ) | ),
k XiECk j=1 Jj=1 \Xxj€Ck
2 2 1
=2 z ”xl”% _m”.‘lckllz avecﬂck = |C | z Xi
X;ECk k k Xj€Ck

Uc, est le vecteur moyen des observations appartenant au cluster k (centroide du cluster k).

2
2 2 2
=2 ”xi”2_|C i x| =2 Il |5 — 2 X * hey,
X{€ECk k X{€Ck X{€ECk X{€ECk
=2 z llx;: 15 — 4 Z X;* ey + 2 z Xi " Uy
XiECk Xi€Ck Xi€Ck
2
=2 2 llx: 115 — 4 Z X" Uey T leﬂck”z
X;ECk X{ECk
2
=2 Z llx;: 115 — 4 z X; * U, + 2|Cy z ”#cknz
X{€ECk X{ECk X{€Ck
2
=2 Z (”xi”% — 2% " ey t ”:“Ckllz)
X{ECk
=2 ) |l —ue,l;
- L :uCk 2
X{€ECk

Le probléme d’optimisation peut donc s’écrire sous la forme suivante :

K

2
> e,

k=1 Xx;EC

minimiser
C1,.CK

Le probléme consiste maintenant a partitionner les observations en K clusters de sorte a
minimiser, sur I’ensemble des clusters, la somme des distances euclidiennes au carré entre
chaque observation et le centroide de son cluster (fonction objectif). Faire apparaitre les
centroides permet d’exprimer le probléme initial uniquement en fonction des distances
entre chaque observation et un représentant du cluster, ce qui simplifie considérablement
I'analyse et sa résolution.
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11.4. Algorithme

Le probléme d’optimisation reste tres difficile a résoudre exactement, puisqu’il existe
approximativement K" fagcons de répartir n observations en K clusters. Ce nombre devient
colossal dés que K ou n ne sont pas extrémement petits.

Heureusement, un algorithme tres simple permet d’obtenir un optimum local (une solution
généralement satisfaisante) pour ce probleme d’optimisation. Cet algorithme, inventé par
Lloyd en 1957, est fondé sur I'heuristique gloutonne. Il consiste a :
1. Choisir au hasard k observations dans D : elles constituent les centres initiaux des
k clusters en construction.
2. Ce choix étant fait, on répéete les deux opérations suivantes jusqu'a ce que les
clusters soient stables :
a. On place chaque observation dans le cluster dont le centre est le plus
proche.
b. On calcule le centre des clusters

Algorithme des k moyennes

# On note j(x;) I'indice du cluster de x;
# K : Nombre de clusters ; x : observation

K_MOYENNES (x, K) :

Choisir au hasard les centres pi¢,, Uc,, Ucy Parmiles observations x;
Tant que les clusters ne sont pas stables :
Pour touti € {1,...,n}:

2
| i < angmin -
je{1,..K} 2
Pourtoutk € {1,...,K}:
P

DD
— — x:— x..
Hcy 1Cul L i 1C] ij

Xi€ECK j=1

Renvoyer C;, C5, ..., Ck

La complexité du calcul de la norme d'un vecteur de RP est en O(p), or chaque itération de la
boucle « Tant que » de l'algorithme nécessite le calcul de n-k telles distances, d'ou une
complexité en O(p-n-k) pour chaque itération. Ainsi, la complexité totale de I'algorithme est
en O(m-p-n-k) ol m est le nombre d'itérations de la boucle « Tant que ».

En pratique, le nombre d’itérations m est souvent faible (quelques dizaines), mais il n’existe
pas de garantie simple en O(n) (k, p et m étant négligeables devant n) au pire cas ; on fixe
souvent un maximum d’itération.
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I.5. Convergence

Lorsque le résultat ne change plus, un optimum local a été atteint. La Figure 3 illustre la
progression de I'algorithme appliqué a un jeu de données simulé. L’algorithme des k
moyennes tire son nom du fait qu’a I'étape 2(b), les centroides des clusters sont calculés
comme la moyenne des observations affectées a chaque cluster.
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Figure 3 : Progression de I’algorithme des k moyennes avec K = 3
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11.6. Impact des choix initiaux

Comme l'algorithme des k moyennes converge vers un optimum local et non vers un
optimum global, les résultats obtenus dépendent de I'affectation initiale (aléatoire) des
observations aux clusters a I'étape 1 de I'algorithme. Pour cette raison, il est important
d’exécuter I'algorithme plusieurs fois a partir de différentes configurations initiales
aléatoires. On sélectionne ensuite la meilleure solution, c’est-a-dire celle pour laquelle la
fonction objectif est minimale.

La Figure 4 illustre les optima locaux obtenus en lancant I'algorithme six fois avec six
affectations initiales différentes, sur un jeu de données simulé. Dans cet exemple, le meilleur
partitionnement est celui dont la valeur du critére est égale a 380.0.

380.0 380.1 753.2

* * et
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¥ ¥ @

n ] F °
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Figure 4 : Algorithme des k moyennes lancé six fois sur un jeu de données simulé, K=3
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11.7. Choix du nombre de clusters

Comme nous I'avons vu, pour appliquer I'algorithme des k-moyennes, il est nécessaire de
choisir le nombre de clusters que I'on suppose présents dans les données. Le choix de K ne
possede pas de solution universelle. Plusieurs criteres complémentaires sont utilisés selon le
contexte (exploration, modélisation, contraintes métier).

La méthode la plus classique est le critére du coude (elbow method). On trace l'inertie intra-
classe en fonction de K :

K
00 =D D i — ke,

k=1x;€Cy

On choisit la valeur ou la décroissance de J(K) ralentit nettement. La limite de cette méthode
est que le « coude » peut étre peu marqué ou subjectif.

La Figure 5 montre une courbe de coude typique pour le jeu de données utilisé dans les
illustrations de la Figure 4:

- Forte décroissance de J(K) pour K entre K=1 et K=3,

- Ralentissement net apres K=3

Le coude apparait ici autour de K=3, ce qui est cohérent avec la structure du jeu de données
utilisé (3 amas).

Méthode du coude (Elbow Method)

2000

1750

1500
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1000
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Inertie intra-classe |(K)

500 ~

250 +

1 2 3 4 5 5] i a8
Nombre de clusters K

Figure 5 : Courbe de coude typique

10



COURS : ALGORITHMES POUR L' INTELLIGENCE ARTIFICIELLE — ALGORITHME DES K MOYENNES

I11) EXEMPLES D’IMPLEMENTATION EN PYTHON

Pour implémenter en Python I'algorithme des k moyennes, définissons deux
sous-programmes.

lll.1. Code de I'’étape 2a : Attribution des observations aux clusters

Le premier permet de trouver I'indice du cluster le plus proche d’une liste d’observations x. Il
effectue I’étape 2a de I'algorithme :

2

) argmin - g |

je(1,..K} 2

2
Remarque : Le code ci-dessous remplace ”xi—-ch| par”xi—-ch| dans I'argmin. Cela
2 2

est possible car les deux quantités induisent le méme ordre sur les distances (croissance
stricte sur R*.

# x : Matrice des observations, de forme (n,p)
# centres : Matrice des centroides, de forme (K,p)

def CALCULER_CLUSTERS(x,centres):
dist=[]
for z in centres:
dist.append(np.linalg.norm(x-z,axis=1))
dist=np.array(dist)
y=np.argmin(dist,axis=0)
return y

l1.2. Code de I’étape 2b : Calcul des centroides

Le deuxieme sous-programme recoit les observations avec leurs étiquettes (clusters
attribués) provisoires et calcule les centres des clusters. Il implémente I'étape 2b de

I'algorithme :
P
x.
oo L
X{€ECk
# x : Matrice des observations, de forme (n,p)
# y : Vecteur des labels, de forme (n), indiquant 1le cluster
# de chaque observation

def CALCULER_CENTRES(x,y):
centres=[]
for label in np.unique(y):
centre=np.mean(x[y==1labell], axis=0)
centres.append(centre)
return np.array(centres)

11
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l11.3. Algorithme complet

Enfin, I'algorithme complet : aprées avoir initialisé les centres, on effectue une boucle dans
laquelle les algorithmes précédents sont appelés :

# x : Observations, de forme (n,p)
# Kk : Nombre de clusters
def K_MOYENNES(x,K):

x=np.array(x)

# Initialisation des centres
indices=np.random.choice(len(x),size=K, replace=False)
centres=x[indices]

# Initialisation des clusters
y=CALCULER_CLUSTERS(x,centres)
y_prec=None

# Boucle

while not np.all(y==y_prec):
y_prec=y.copy()
centres=CALCULER_CENTRES(x,y)
y=CALCULER_CLUSTERS(x,centres)

return y,centres
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